Create the figures from the simulated dynamic range phantom

For the publication Rindal, O. M. H., Austeng, A., Fatemi, A., & Rodriguez-Molares, A. (2019). The effect of dynamic range alterations in the estimation of contrast. Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

NB! You need to run the create_figures_from_experimental.m first since we are using the stored experimental gradient values and contrast values to plot both the simulated and the experimental in the same plot.

Author: Ole Marius Hoel Rindal olemarius@olemarius.net 05.06.18 updated for revised version of manuscript 07.03.19

Contents

Load the data from the uff file

clear all;
close all;
addpath([ustb_path,filesep,'publications',filesep,'DynamicRange',filesep,'functions',filesep])

filename = 'FieldII_STAI_dynamic_range.uff';
url='http://ustb.no/datasets/';      % if not found downloaded from here

% checks if the data is in your data path, and downloads it otherwise.
% The defaults data path is under USTB's folder, but you can change this
% by setting an environment variable with setenv(DATA_PATH,'the_path_you_want_to_use');
tools.download(filename, url, data_path);

channel_data = uff.channel_data();
channel_data.read([data_path,filesep,filename],'/channel_data');

b_data_das = uff.beamformed_data();
b_data_cf = uff.beamformed_data();
b_data_pcf = uff.beamformed_data();
b_data_gcf = uff.beamformed_data();
b_data_mv = uff.beamformed_data();
b_data_ebmv = uff.beamformed_data();
b_data_dmas = uff.beamformed_data();
b_data_weights = uff.beamformed_data();

b_data_das.read([data_path,filesep,filename],'/b_data_das');
b_data_cf.read([data_path,filesep,filename],'/b_data_cf');
b_data_pcf.read([data_path,filesep,filename],'/b_data_pcf');
b_data_gcf.read([data_path,filesep,filename],'/b_data_gcf');
b_data_mv.read([data_path,filesep,filename],'/b_data_mv');
b_data_ebmv.read([data_path,filesep,filename],'/b_data_ebmv');
b_data_dmas.read([data_path,filesep,filename],'/b_data_dmas');
b_data_weights.read([data_path,filesep,filename],'/b_data_weights');

weights = b_data_weights.get_image('none');

mkdir([ustb_path,filesep,'publications/DynamicRange/figures/simulation/']);
mkdir([ustb_path,filesep,'publications/DynamicRange/figures/simulation/gradient/']);
mkdir([ustb_path,filesep,'publications/DynamicRange/figures/simulation/calibrated/']);
mkdir([ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/']);
UFF: reading channel_data [uff.channel_data]
UFF: reading sequence [uff.wave] [====================] 100%
UFF: reading /b_data_das [uff.beamformed_data]
UFF: reading /b_data_cf [uff.beamformed_data]
UFF: reading /b_data_pcf [uff.beamformed_data]
UFF: reading /b_data_gcf [uff.beamformed_data]
UFF: reading /b_data_mv [uff.beamformed_data]
UFF: reading /b_data_ebmv [uff.beamformed_data]
UFF: reading /b_data_dmas [uff.beamformed_data]
UFF: reading /b_data_weights [uff.beamformed_data]
Warning: Directory already exists. 
Warning: Directory already exists. 
Warning: Directory already exists. 
Warning: Directory already exists. 

Print authorship and citation details for the dataset

channel_data.print_authorship
Name: 		 v5 Simulated dynamic range phantom. Created with  
		 Field II. See the reference for details 
Reference: 	 Rindal, O. M. H., Austeng, A., Fatemi, A., &  
		 Rodriguez-Molares, A. (2018). The effect of  
		 dynamic range transformations in the estimation  
		 of contrast. Submitted to IEEE Transactions on  
		 Ultrasonics, Ferroelectrics, and Frequency  
		 Control. 
Author(s): 	 Ole Marius Hoel Rindal <omrindal@ifi.uio.no 
		 Alfonso Rodriguez-Molares <alfonso.r.molares@ntnu.no> 
Version: 	 1.0.1 

DAS - Delay-And-Sum

Create the individual images and the zoomed images on the boxes

das_img = b_data_das.get_image('none').*weights;  % Compensation weighting
b_data_das.data = das_img(:); %Putting the weighted data back...
das_img = db(abs(das_img./max(das_img(:))));      % Normalize on max
f1 = figure(1);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,das_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14);
saveas(f1,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DAS'],'eps2c')
saveas(f1,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DAS'],'png')
f2 = figure(2);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,das_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f2,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DAS_zoomed'],'eps2c')

GLT - Gray Level Transform

glt_s = postprocess.scurve_gray_level_transform();

glt_s.a = 0.12;
glt_s.b = -40;
glt_s.c = 0.008;

glt_s.plot_functions = 1;
glt_s.input = b_data_das;
glt_s.scan = b_data_das.scan;
b_data_glt = glt_s.go();

glt_img = b_data_glt.get_image('none');  % Compensation weighting
b_data_glt.data = glt_img(:);
glt_img = db(abs(glt_img./max(glt_img(:)))+eps);      % Normalize on max
f100 = figure(100);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,glt_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f100,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/GLT'],'eps2c')

f101 = figure(101);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,glt_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f101,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/GLT_zoomed'],'eps2c')

CF - Coherence Factor

cf_img = b_data_cf.get_image('none').*weights;
b_data_cf.data = cf_img(:);
cf_img = db(abs(cf_img./max(cf_img(:))));                 % Normalize on max
f2 = figure(2);
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,cf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f2,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CF'],'eps2c')
f22 = figure(22);
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,cf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f22,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CF_zoomed'],'eps2c')

PCF - Phase Coherence Factor

pcf_img = b_data_pcf.get_image('none').*weights;
b_data_pcf.data = pcf_img(:);
b_data_pcf.data(isinf(b_data_pcf.data)) = eps;
b_data_pcf.data(b_data_pcf.data==0) = eps;
pcf_img(isinf(pcf_img)) = eps;
pcf_img(pcf_img==0) = eps;
pcf_img = db(abs(pcf_img./max(pcf_img(:)))+eps);
f3 = figure(3);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,pcf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f3,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/PCF'],'eps2c')
f33 = figure(33);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,pcf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f33,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/PCF_zoomed'],'eps2c')

GCF - Generalized Coherence Factor

gcf_img = b_data_gcf.get_image('none').*weights;
b_data_gcf.data = gcf_img(:);
gcf_img = db(abs(gcf_img./max(gcf_img(:))));
f4 = figure(4);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,gcf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f4,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/GCF'],'eps2c')
f44 = figure(44);
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,gcf_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f44,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/GCF_zoomed'],'eps2c')

MV - Capon's Minimum Variance

mv_img = b_data_mv.get_image('none').*weights;
b_data_mv.data = mv_img(:);
mv_img = db(abs(mv_img./max(mv_img(:))));
f6 = figure(6);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,mv_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f6,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/MV'],'eps2c')
f66 = figure(66);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,mv_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f66,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/MV_zoomed'],'eps2c')

F-DMAS - Filtered-Delay-Multiply-and-Sum

dmas_img = b_data_dmas.get_image('none').*weights;
b_data_dmas.data = dmas_img(:);
dmas_img = db(abs(dmas_img./max(dmas_img(:))));
f7 = figure(7);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,dmas_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f7,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DMAS'],'eps2c')
f77 = figure(77);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,dmas_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f77,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DMAS_zoomed'],'eps2c')

EBMV - Eigenspace Based Minimum Variance

ebmv_img = b_data_ebmv.get_image('none').*weights;
b_data_ebmv.data = ebmv_img(:);
ebmv_img = db(abs(ebmv_img./max(ebmv_img(:))));
f8 = figure(8);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,ebmv_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
saveas(f8,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/EBMV'],'eps2c')
f88 = figure(88);clf;
imagesc(b_data_das.scan.x_axis*1000,b_data_das.scan.z_axis*1000,ebmv_img);
colormap gray;caxis([-60 0]);axis image;xlabel('x [mm]');ylabel('z [mm]');
set(gca,'FontSize',14)
axis([-15 3 27 33]);
saveas(f88,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/EBMV_zoomed'],'eps2c')

Putting the dB images and the signal in a cell array

addpath([ustb_path,'/publications/DynamicRange/functions']);
image.all{1} = das_img;
image.all_signal{1} = double(b_data_das.get_image('none'));
image.all_signal{1} = (image.all_signal{1}./max(image.all_signal{1}(:)));
image.tags{1} = 'DAS';
image.all{2} = mv_img;
image.all_signal{2} = double(b_data_mv.get_image('none'));
image.all_signal{2} = (image.all_signal{2}./max(image.all_signal{2}(:)));
image.tags{2} = 'MV';
image.all{3} = ebmv_img;
image.all_signal{3} = double(b_data_ebmv.get_image('none'));
image.all_signal{3} = (image.all_signal{3}./max(image.all_signal{3}(:)));
image.tags{3} = 'EBMV';
image.all{4} = dmas_img;
image.all_signal{4} = double(b_data_dmas.get_image('none'));
image.all_signal{4} = (image.all_signal{4}./max(image.all_signal{4}(:)));
image.tags{4} = 'F-DMAS';
image.all{5} = cf_img;
image.all_signal{5} = double(b_data_cf.get_image('none'));
image.all_signal{5} = (image.all_signal{5}./max(image.all_signal{5}(:)));
image.tags{5} = 'CF';
image.all{6} = gcf_img;
image.all_signal{6} = double(b_data_gcf.get_image('none'));
image.all_signal{6} = (image.all_signal{6}./max(image.all_signal{6}(:)));
image.tags{6} = 'GCF';
image.all{7} = pcf_img;
image.all_signal{7} = double(b_data_pcf.get_image('none'));
image.all_signal{7}(isinf(image.all_signal{7})) = eps;
image.all_signal{7} = (image.all_signal{7}./max(image.all_signal{7}(:)));
image.tags{7} = 'PCF';
image.all{8} = glt_img;
image.all_signal{8} = double(b_data_glt.get_image('none'));
image.all_signal{8} = (image.all_signal{8}./max(image.all_signal{8}(:)));
image.tags{8} = 'GLT';

% Using "linspecer" colors
colors=    [0.9047    0.1918    0.1988; ...
            0.2941    0.5447    0.7494; ...
            0.3718    0.7176    0.3612; ...
            1.0000    0.5482    0.1000; ...
            0.8650    0.8110    0.4330; ...
            0.6859    0.4035    0.2412; ...
            0.9718    0.5553    0.7741; ...
            0.6400    0.6400    0.6400];

Plot the lateral and axial gradient together with the experimental lateral gradient

image_experimental = load([ustb_path,'/publications/DynamicRange/','Experimental.mat'],'image');
image_experimental = image_experimental.image;
b_data_das_exp = load([ustb_path,'/publications/DynamicRange/','Experimental.mat'],'b_data_das');
b_data_das_exp = b_data_das_exp.b_data_das;

x_axis_grad_start = 14;

[meanLinesLateralExp,~] = getMeanLateralLines(b_data_das_exp,image_experimental,39,48.5,-x_axis_grad_start,x_axis_grad_start);

gradient = -1.8;

mask_lateral_exp=abs(b_data_das_exp.scan.x_axis)<x_axis_grad_start*10^-3;
%theory_lateral_exp=-40*(b_data_das_exp.scan.x_axis(mask_lateral_exp)+x_axis_grad_start*10^-3)/24.1e-3;
theory_lateral_exp = (gradient*(b_data_das_exp.scan.x_axis(mask_lateral_exp)+x_axis_grad_start*10^-3))*10^3;

[meanLinesLateral,x_axis] = getMeanLateralLines(b_data_das,image,39,48.5,-x_axis_grad_start,x_axis_grad_start);
mask_lateral=abs(b_data_das.scan.x_axis)<x_axis_grad_start*10^-3;
theory_lateral = (gradient*(b_data_das.scan.x_axis(mask_lateral)+x_axis_grad_start*10^-3))*10^3;

[meanLines_axial,z_axis] = getMeanAxialLines(b_data_das,image,10,38,15,18.5);
mask_axial= b_data_das.scan.z_axis<38e-3 & b_data_das.scan.z_axis>10e-3;
theory_axial = (gradient*(b_data_das.scan.z_axis(mask_axial)-10e-3))*10^3;

for i = 1:length(image.all)
    f88 = figure(8888+i);clf;hold all;
    plot(theory_lateral,meanLinesLateral.all{i}-max(meanLinesLateral.all{i}),'LineStyle','-.','Linewidth',2,'DisplayName','Sim. lateral');
    plot(theory_axial,meanLines_axial.all{i}-max(meanLines_axial.all{i}),'Linestyle','--','Linewidth',2,'DisplayName','Sim. axial');
    plot(theory_lateral_exp,meanLinesLateralExp.all{i}-max(meanLinesLateralExp.all{i}),'Linestyle',':','Linewidth',2,'DisplayName','Exp. lateral');
    plot(theory_lateral,theory_lateral,'LineStyle','-','Linewidth',2,'Color','k','DisplayName','Theory');
    set(gca, 'XDir','reverse');%title(image.tags{i});
    axis image
    legend('show','Location','sw');
    ylim([-60 0])
    xlim([-50 0])
    grid on
    xlabel('Theoretical [dB]');
    ylabel('Output [dB]');
    saveas(f88,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/gradient/',image.tags{i}],'eps2c')
    %saveas(f88,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/gradient/',image.tags{i}],'png')
end

Plot the lateral line through the boxes

[meanLines,x_axis] = getMeanLateralLines(b_data_das,image,27.5,32.5,b_data_das.scan.x(1)*10^3,b_data_das.scan.x(end)*10^3);
theoretical = [-100 ones(1,255)*0 ones(1,255)*-10 -100 ones(1,256)*-100 ones(1,256)*-100 -100 ones(1,255)*0 ones(1,255)*-35 -100];
x_axis_theoretical = linspace(-13,2,1536);

f89 = figure(89);clf;hold all;
subplot(211);hold on;
plot(x_axis_theoretical,theoretical,'LineStyle','-.','Linewidth',2,'DisplayName','Theoretical','Color',[0 0 0]);
plot(x_axis,meanLines.all{1}-max(meanLines.all{1}),'Linewidth',2,'DisplayName',image.tags{1},'Color',colors(1,:));
plot(x_axis,meanLines.all{2}-max(meanLines.all{2}),'Linewidth',2,'DisplayName',image.tags{2},'Color',colors(2,:));
plot(x_axis,meanLines.all{3}-max(meanLines.all{3}),'Linewidth',2,'DisplayName',image.tags{3},'Color',colors(3,:));
plot(x_axis,meanLines.all{4}-max(meanLines.all{4}),'Linewidth',2,'DisplayName',image.tags{4},'Color',colors(4,:));
plot(x_axis,meanLines.all{5}-max(meanLines.all{5}),'Linewidth',2,'DisplayName',image.tags{5},'Color',colors(5,:));
plot(x_axis,meanLines.all{6}-max(meanLines.all{6}),'Linewidth',2,'DisplayName',image.tags{6},'Color',colors(6,:));
plot(x_axis,meanLines.all{7}-max(meanLines.all{7}),'Linewidth',2,'DisplayName',image.tags{7},'Color',colors(7,:));
plot(x_axis,meanLines.all{8}-max(meanLines.all{8}),'Linewidth',2,'DisplayName',image.tags{8},'Color',colors(8,:));
ylim([-80 0]);
xlim([-14 8]);
legend('Location','best'); grid on;
ylabel('Normalized amplitude [dB]');
xlabel('x [mm]');
saveas(f89,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/boxes'],'eps2c')

Calibrate images

[image_calibrated_on_theoretical] = calibrateImage_on_theoretical(b_data_das,image,40,48.5,-14,14,3,1.8,colors);

x_axis_grad_start = 14;
mask_lateral=abs(b_data_das.scan.x_axis)<x_axis_grad_start*10^-3;
theory_lateral = (-1.8*(b_data_das.scan.x_axis(mask_lateral)+x_axis_grad_start*10^-3))*10^3;

[meanLines_calibrated,~] = getMeanLateralLines(b_data_das,image_calibrated_on_theoretical,39,48.5,-x_axis_grad_start,x_axis_grad_start);

f10 = figure(77);clf;hold all;
subplot(211);
plot(theory_lateral,theory_lateral,'k--','DisplayName','Theory','linewidth',2); hold on; grid on;
for i = 1:length(image_calibrated_on_theoretical.all)
    plot(theory_lateral,meanLines_calibrated.all{i}-max(meanLines_calibrated.all{i}),'linewidth',2,'DisplayName',image.tags{i},'Color',colors(i,:));
end
xlabel('Theoretical [dB]');
ylabel('Output [dB]');
set(gca, 'XDir','reverse');
xlim([-50 0])
ylim([-80 0])
legend show
saveas(f10,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/calibrated/calibrated_all_curves_on_theoretical'],'eps2c')

Plot the lateral line through the boxes after calibration

[meanLines,x_axis] = getMeanLateralLines(b_data_das,image_calibrated_on_theoretical,27.5,32.5,b_data_das.scan.x(1)*10^3,b_data_das.scan.x(end)*10^3);
theoretical = [-100 ones(1,255)*0 ones(1,255)*-10 -100 ones(1,256)*-100 ones(1,256)*-100 -100 ones(1,255)*0 ones(1,255)*-35 -100];
x_axis_theoretical = linspace(-13,2,1536);

f89 = figure(90);clf;hold all;
subplot(211);hold on;
plot(x_axis_theoretical,theoretical,'LineStyle','-.','Linewidth',2,'DisplayName','Theoretical','Color',[0 0 0]);
plot(x_axis,meanLines.all{1}-max(meanLines.all{1}),'Linewidth',2,'DisplayName',image.tags{1},'Color',colors(1,:));
plot(x_axis,meanLines.all{2}-max(meanLines.all{2}),'Linewidth',2,'DisplayName',image.tags{2},'Color',colors(2,:));
plot(x_axis,meanLines.all{3}-max(meanLines.all{3}),'Linewidth',2,'DisplayName',image.tags{3},'Color',colors(3,:));
plot(x_axis,meanLines.all{4}-max(meanLines.all{4}),'Linewidth',2,'DisplayName',image.tags{4},'Color',colors(4,:));
plot(x_axis,meanLines.all{5}-max(meanLines.all{5}),'Linewidth',2,'DisplayName',image.tags{5},'Color',colors(5,:));
plot(x_axis,meanLines.all{6}-max(meanLines.all{6}),'Linewidth',2,'DisplayName',image.tags{6},'Color',colors(6,:));
plot(x_axis,meanLines.all{7}-max(meanLines.all{7}),'Linewidth',2,'DisplayName',image.tags{7},'Color',colors(7,:));
plot(x_axis,meanLines.all{8}-max(meanLines.all{8}),'Linewidth',2,'DisplayName',image.tags{8},'Color',colors(8,:));
ylim([-80 0]);
xlim([-14 8]);
legend('Location','best'); grid on;
ylabel('Normalized amplitude [dB]');
xlabel('x [mm]');
saveas(f89,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/calibrated/boxes_calibrated_lines_on_theoretical'],'eps2c')
saveas(f89,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/calibrated/boxes_calibrated_lines_on_theoretical'],'png')

Measure contrast and plot together with the experimental

[CR_signal_sim, CR_signal_dagger, CR_image_sim, CNR_signal_sim, CNR_image_sim] = measureContrast(b_data_das,image,-5.5,17.5,3.5,5,8,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DAS_cyst_indicated']);

load('Experimental.mat','CR_signal_exp','CNR_signal_exp','CR_image_exp','CNR_image_exp');
f9 = figure;
subplot(211);
bar([10*log10(CR_signal_sim)' 10*log10(CR_signal_exp)'])
set(gca,'XTick',linspace(1,length(image.tags),length(image.tags)))
set(gca,'XTickLabel',image.tags)
ylabel('CR [dB]');
x_pos = [0.8 1.8 2.8 3.8 4.8 5.8 6.8 7.8];
text(x_pos,double(10*log10(CR_signal_sim(:))),num2str(round(10*log10(CR_signal_sim(:))),'%d'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
x_pos = [1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2];
text(x_pos,double(10*log10(CR_signal_exp(:))),num2str(round(10*log10(CR_signal_exp(:))),'%d'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
set(gca,'Ydir','reverse')
legend('Sim.','Exp.','Location','nw')
grid on
saveas(f9,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CR'],'eps2c')
f90 = figure;
subplot(212);
bar([CR_image_sim' CR_image_exp'])
set(gca,'XTick',linspace(1,length(image.tags),length(image.tags)))
set(gca,'XTickLabel',image.tags)
ylabel('CR_{LC} [dB]');
x_pos = [0.8 1.8 2.8 3.8 4.8 5.8 6.8 7.8];
text(x_pos,double(CR_image_sim(:)),num2str(round(CR_image_sim(:)),'%d'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
x_pos = [1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2];
text(x_pos,double(CR_image_exp(:)),num2str(round(CR_image_exp(:)),'%d'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
ylim([0 125])
legend('Sim.','Exp.','Location','nw')
grid on
saveas(f90,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CR_LC'],'eps2c')
f77 = figure(77);clf;
subplot(211);
bar([CNR_signal_sim' CNR_signal_exp'])
set(gca,'XTick',linspace(1,length(image.tags),length(image.tags)))
set(gca,'XTickLabel',image.tags)
ylabel('CNR');
x_pos = [0.75 1.75 2.75 3.75 4.75 5.75 6.75 7.75];
text(x_pos,double(CNR_signal_sim(:)),num2str((CNR_signal_sim(:)),'%.2f'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
x_pos = [1.25 2.25 3.25 4.25 5.25 6.25 7.25 8.25];
text(x_pos,double(CNR_signal_exp(:)),num2str((CNR_signal_exp(:)),'%.2f'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
ylim([0 1.45])
legend('Sim.','Exp.','Location','nw')
grid on
saveas(f77,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CNR'],'eps2c')
f78 = figure(78);clf;
subplot(212);
bar([CNR_image_sim' CNR_image_exp'])
set(gca,'XTick',linspace(1,length(image.tags),length(image.tags)))
set(gca,'XTickLabel',image.tags)
ylabel('CNR_{LC}');
x_pos = [0.75 1.75 2.75 3.75 4.75 5.75 6.75 7.75];
text(x_pos,double(CNR_image_sim(:)),num2str((CNR_image_sim(:)),'%.2f'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
x_pos = [1.25 2.25 3.25 4.25 5.25 6.25 7.25 8.25];
text(x_pos,double(CNR_image_exp(:)),num2str((CNR_image_exp(:)),'%.2f'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
legend('Sim.','Exp.','Location','nw')
grid on
ylim([0 9])
saveas(f78,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/CNR_LC'],'eps2c')

Run Dynamic Range Test

diff{1} = tools.dynamic_range_test(channel_data,b_data_das,'DAS');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','DAS'],'eps2c');
diff{2} = tools.dynamic_range_test(channel_data,b_data_mv,'MV');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','MV'],'eps2c');
diff{3} = tools.dynamic_range_test(channel_data,b_data_ebmv,'EBMV');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','EBMV'],'eps2c');
diff{4} = tools.dynamic_range_test(channel_data,b_data_dmas,'F-DMAS');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','F-DMAS'],'eps2c');
diff{5} = tools.dynamic_range_test(channel_data,b_data_cf,'CF');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','CF'],'eps2c');
diff{6} = tools.dynamic_range_test(channel_data,b_data_gcf,'GCF');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','GCF'],'eps2c');
diff{7} = tools.dynamic_range_test(channel_data,b_data_pcf,'PCF');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','PCF'],'eps2c');
diff{8} = tools.dynamic_range_test(channel_data,b_data_glt,'GLT');
set(gcf,'Position',[7 222 1271 347]);
saveas(gcf,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/dynamic_range_test/','GLT'],'eps2c');
for i = 1:length(image.tags)
    DRT_value(i) = (mean(diff{i}));
end
cr_improvement = CR_image_sim - CR_image_sim(1);

lmd_sim_slope = fitlm(cr_improvement(1:8),DRT_value(1:8))

lmd_sim_slope.Rsquared.Ordinary
lmd_sim_slope.Rsquared.Adjusted

f113 = figure(114);clf;hold all;
linespes = '+ox*sd<>';
for i = 1:length(image.all)
    plot(cr_improvement(i),DRT_value(i),linespes(i),'Color',colors(i,:),'MarkerSize',10);
end
lmd_sim_slope.plot
hline = findobj(gcf, 'type', 'line');
set(hline,'LineWidth',3);
set(hline(3),'Color',[0 0 0]);
set(hline(3),'DisplayName','Fitted line');
title('')
xlabel('CR improve cmp. DAS [%]');%xlim([-5 75]);
ylabel('Slope diff [in %]');%ylim([-50 5]);
text(80,10,sprintf('R-Squared: %.2f',lmd_sim_slope.Rsquared.Ordinary),'FontSize',18);
text(80,0,sprintf('R-Squared adj: %.2f',lmd_sim_slope.Rsquared.Adjusted),'FontSize',18);
set(gca,'FontSize',14);
delete(hline(4));
legend();
hLegend = findobj(gcf, 'Type', 'Legend');
legend show
legend([{image.tags{1:8}} hLegend.String],'Location','nw');

saveas(f113,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/correlation_simulation'],'eps2c')
lmd_sim_slope = 


Linear regression model:
    y ~ 1 + x1

Estimated Coefficients:
                   Estimate       SE       tStat      pValue  
                   ________    ________    ______    _________

    (Intercept)     0.86838     0.16773    5.1773    0.0020598
    x1             0.018225    0.004179     4.361    0.0047651


Number of observations: 8, Error degrees of freedom: 6
Root Mean Squared Error: 0.256
R-squared: 0.76,  Adjusted R-Squared 0.72
F-statistic vs. constant model: 19, p-value = 0.00477

ans =

    0.7602


ans =

    0.7202

lmd_sim_slope = fitlm(cr_improvement(1:7),DRT_value(1:7))

lmd_sim_slope.Rsquared.Ordinary
lmd_sim_slope.Rsquared.Adjusted

f113 = figure(114);clf;hold all;
linespes = '+ox*sd<>';
for i = 1:length(image.all)-1
    plot(cr_improvement(i),DRT_value(i),linespes(i),'Color',colors(i,:),'MarkerSize',10);
end
lmd_sim_slope.plot
hline = findobj(gcf, 'type', 'line');
set(hline,'LineWidth',3);
set(hline(3),'Color',[0 0 0]);
set(hline(3),'DisplayName','Fitted line');
title('')
xlabel('CR_{LC} improve compared to DAS [dB]','Interpreter', 'tex');
ylabel('DRT value');
text(40,1,sprintf('R-Squared: %.2f',lmd_sim_slope.Rsquared.Ordinary),'FontSize',18);
text(40,0.9,sprintf('R-Squared adj: %.2f',lmd_sim_slope.Rsquared.Adjusted),'FontSize',18);
set(gca,'FontSize',14);
delete(hline(4));
legend();
hLegend = findobj(gcf, 'Type', 'Legend');
legend show
legend([{image.tags{1:7}} hLegend.String],'Location','nw');


saveas(f113,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/correlation_simulation_without_glt'],'eps2c')
lmd_sim_slope = 


Linear regression model:
    y ~ 1 + x1

Estimated Coefficients:
                   Estimate       SE        tStat       pValue  
                   ________    _________    ______    __________

    (Intercept)     0.94049     0.075572    12.445    5.9395e-05
    x1             0.013554    0.0020665    6.5588      0.001235


Number of observations: 7, Error degrees of freedom: 5
Root Mean Squared Error: 0.113
R-squared: 0.896,  Adjusted R-Squared 0.875
F-statistic vs. constant model: 43, p-value = 0.00123

ans =

    0.8959


ans =

    0.8750

load([ustb_path,'/publications/DynamicRange/','Experimental.mat'],'DRT_value_exp');
f10 = figure(10);clf;
subplot(211);
bar([DRT_value' DRT_value_exp'])
set(gca,'XTick',linspace(1,length(image.tags),length(image.tags)))
set(gca,'XTickLabel',image.tags)
ylabel('DRT value');
legend('Location','nw','sim.','exp.')
x_pos = [0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25];
DRT_value_all = [];
for i = 1:length(DRT_value_exp)
    DRT_value_all = [DRT_value_all; DRT_value(i); DRT_value_exp(i)];
end
text(x_pos,double(DRT_value_all),num2str(DRT_value_all(:),'%0.1f'),...
    'HorizontalAlignment','center',...
    'VerticalAlignment','bottom',...
    'FontSize',12)
grid on;
ylim([0 2.7])

saveas(f10,[ustb_path,filesep,'publications/DynamicRange/figures/simulation/DRT'],'eps2c')